Representation of Aggregation Knowledge in OLAP Systems

نویسندگان

  • Nicolas Prat
  • Isabelle Comyn-Wattiau
  • Jacky Akoka
چکیده

Decision support systems are mainly based on multidimensional modeling. Using On-Line Analytical Processing (OLAP) tools, decision makers navigate through and analyze multidimensional data. Typically, users need to analyze data at different aggregation levels, using OLAP operators such as roll-up and drill-down. Roll-up operators decrease the details of the measure, aggregating it along the dimension hierarchy. Conversely, drill-down operators increase the details of the measure. As a consequence, dimensions hierarchies play a central role in knowledge representation. More precisely, since aggregation hierarchies are widely used to support data aggregation, aggregation knowledge should be adequately represented in conceptual multidimensional models, and mapped in subsequent logical and physical models. However, current conceptual multidimensional models poorly represent aggregation knowledge, which (1) has a complex structure and dynamics and (2) is highly contextual. In order to account for the characteristics of this knowledge, we propose to represent it with objects and rules. Static aggregation knowledge is represented using UML class diagrams, while rules, which represent the dynamics (i.e. how aggregation may be performed depending on context), are represented using the Production Rule Representation (PRR) language. The latter allows us to incorporate dynamic aggregation knowledge. We argue that this representation of aggregation knowledge allows an early modeling of user requirements in a decision support system project. In order to illustrate the applicability and benefits of our approach, we exemplify the production rules and present an application scenario.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining objects with rules to represent aggregation knowledge in data warehouse and OLAP systems

Data warehouses are based on multidimensional modeling. Using On-Line Analytical Processing (OLAP) tools, decision makers navigate through and analyze multidimensional data. Typically, users need to analyze data at different aggregation levels (using roll-up and drill-down functions). Therefore, aggregation knowledge should be adequately represented in conceptual multidimensional models, and ma...

متن کامل

Doing more with more information: Changing healthcare planning with OLAP tools

On-line analytical processing (OLAP) is an example of a new breed of tools for decision support that give decision makers the flexibility to customize the selection, aggregation, and presentation of data. To understand the impact of this type of tool, we study an implementation of an OLAP interface on the CATCH data warehouse used by knowledge workers at a regional health planning agency in the...

متن کامل

Aggregation Algorithms for Very Large Compressed Data Warehouses

Many efficient algorithms to compute multidimensional aggregation and Cube for relational OLAP have been developed. However, to our knowledge, there is nothing to date in the literature on aggregation algorithms on compressed data warehouses for multidimensional OLAP. This paper presents a set of aggregation algorithms on very large compressed data warehouses for multidimensional OLAP. These al...

متن کامل

Extending Practical Pre-Aggregation in On-Line Analytical Processing

On-Line Analytical Processing (OLAP) based on a dimensional view of data is being used increasingly in traditional business applications as well as in applications such as health care for the purpose of analyzing very large amounts of data. Pre-aggregation, the prior materialization of aggregate queries for later use, is an essential technique for ensuring adequate response time during data ana...

متن کامل

Efficient Aggregation Algorithms for Compressed Data Warehouses

ÐAggregation and cube are important operations for online analytical processing (OLAP). Many efficient algorithms to compute aggregation and cube for relational OLAP have been developed. Some work has been done on efficiently computing cube for multidimensional data warehouses that store data sets in multidimensional arrays rather than in tables. However, to our knowledge, there is nothing to d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010